Adds 3D datapoints to the current scene, using latitude/longitude or coordinates in the reference system defined by the extent object. If no altitude is provided, the points will be elevated a constant offset above the heightmap. If the points goes off the edge, the nearest height on the heightmap will be used.

render_points(
  extent = NULL,
  lat = NULL,
  long = NULL,
  altitude = NULL,
  zscale = 1,
  heightmap = NULL,
  size = 3,
  color = "black",
  offset = 5,
  clear_previous = FALSE
)

Arguments

extent

A `raster::Extent` object with the bounding box of the displayed 3D scene.

lat

Vector of latitudes (or other coordinate in the same coordinate reference system as extent).

long

Vector of longitudes (or other coordinate in the same coordinate reference system as extent).

altitude

Elevation of each point, in units of the elevation matrix (scaled by zscale).

zscale

Default `1`. The ratio between the x and y spacing (which are assumed to be equal) and the z axis in the original heightmap.

heightmap

Default `NULL`. Automatically extracted from the rgl window--only use if auto-extraction of matrix extent isn't working. A two-dimensional matrix, where each entry in the matrix is the elevation at that point. All points are assumed to be evenly spaced.

size

Default `3`. The point size.

color

Default `black`. Color of the point.

offset

Default `5`. Offset of the track from the surface, if `altitude = NULL`.

clear_previous

Default `FALSE`. If `TRUE`, it will clear all existing points.

Examples

# \donttest{ #Starting at Moss Landing in Monterey Bay, we are going to simulate a flight of a bird going #out to sea and diving for food. #First, create simulated lat/long data set.seed(2009) moss_landing_coord = c(36.806807, -121.793332) x_vel_out = -0.001 + rnorm(1000)[1:300]/1000 y_vel_out = rnorm(1000)[1:300]/200 z_out = c(seq(0,2000,length.out = 180), seq(2000,0,length.out=10), seq(0,2000,length.out = 100), seq(2000,0,length.out=10)) bird_track_lat = list() bird_track_long = list() bird_track_lat[[1]] = moss_landing_coord[1] bird_track_long[[1]] = moss_landing_coord[2] for(i in 2:300) { bird_track_lat[[i]] = bird_track_lat[[i-1]] + y_vel_out[i] bird_track_long[[i]] = bird_track_long[[i-1]] + x_vel_out[i] } #Render the 3D map montereybay %>% sphere_shade() %>% plot_3d(montereybay,zscale=50,water=TRUE, shadowcolor="#40310a", watercolor="#233aa1", background = "tan", theta=210, phi=22, zoom=0.20, fov=55) #Pass in the extent of the underlying raster (stored in an attribute for the montereybay #dataset) and the latitudes, longitudes, and altitudes of the track. render_points(extent = attr(montereybay,"extent"), lat = unlist(bird_track_lat), long = unlist(bird_track_long), altitude = z_out, zscale=50,color="white") render_snapshot()
#We'll set the altitude to zero to give the tracks a "shadow" over the water. render_points(extent = attr(montereybay,"extent"), lat = unlist(bird_track_lat), long = unlist(bird_track_long), altitude = 0, zscale=50, color="black") render_camera(theta=30,phi=35,zoom=0.45,fov=70) render_snapshot()
#Remove the points: render_points(clear_previous=TRUE) # Finally, we can also plot just GPS coordinates offset from the surface by leaving altitude `NULL` # Here we plot a circle of values surrounding Moss Landing. This requires the original heightmap. t = seq(0,2*pi,length.out=100) circle_coords_lat = moss_landing_coord[1] + 0.3 * sin(t) circle_coords_long = moss_landing_coord[2] + 0.3 * cos(t) render_points(extent = attr(montereybay,"extent"), heightmap = montereybay, lat = unlist(circle_coords_lat), long = unlist(circle_coords_long), zscale=50, color="red", offset=100, size=5) render_camera(theta = 160, phi=33, zoom=0.4, fov=55) render_snapshot()
#And all of these work with `render_highquality()` render_highquality(point_radius = 3, clamp_value=10)
rgl::rgl.close() # }